Deb Shechter

Recent Posts

What Are Homogenizing Agents & How Do They Improve the Homogenization Process?

Posted by Deb Shechter on Dec 17, 2018 12:10:59 PM

homogenizing agentsFor most people, “homogenization” and “homogenizing agents” aren’t words that just roll off the tongue. But for us here at BEE International, talking about them comes as easily as discussing our favorite TV show or the day’s weather. So, if you’ve ever wondered what “homogenized milk” meant or how your face cream was made or why some peanut butter doesn’t have to be stirred, we’d love to share with you the facts about high pressure homogenization and homogenizing agents. Consider the following:

An Overview of the Homogenization Process

Homogenization is the process of combining two substances by breaking them into uniform pieces and mixing them together evenly. Homogenization facilitates many laboratory and manufacturing processes, such as those in the pharmaceutical, biotech, chemical, cosmetic and food industries. Not only does homogenization change the physical characteristics of materials, making it easier for scientists and manufacturers to work with raw components, it also helps ensure product quality, maintain long-term storage of materials and isolate certain particles when necessary. All of these things are necessary for superior performance among a variety of products. Homogenization makes our milk taste good and keeps our peanut butter from separating into a lump of peanut paste and a pool of oil. It keeps our lotions thick, yet spreadable, and our medicines effective.

But what if certain materials resist homogenization attempts by mechanical equipment alone? What if they need something more to help break them apart and realign their parts equally? In these cases, homogenizing agents are used.

What are Homogenizing Agents?

Homogenizing agents are resin-based mixtures which are usually added at the beginning of a homogenization cycle. When heated to certain temperatures, they turn “sticky” and help to moisten and soften the surfaces of the substances being melded together. 

How Do They Improve the Homogenization Process?

Because of their tackiness, homogenizing agents make it easier for some substances to blend and distribute their particles evenly. They also encourage filler acceptance. And by helping to shorten the time it takes to blend materials regardless of their “molecular weight, viscosity or polarity,” homogenizing agents save energy and other valuable resources.

In scientific and research settings, efficient homogenization can do more than just save time, though. It can also save lives. The right homogenizer and the right homogenizing agents can reduce the number of passes it takes to get viable results, ensuring that all steps in the testing cycle are consistent and go as smoothly and quickly as possible.

In more industrial settings, the right homogenizers and homogenizing agents ensure that applications are customized according to overall purposes, whether that be securing product stability; guaranteeing sterility; improving color, texture, taste and nutritional value; or simply maintaining cost effectiveness. 

Need More Info?

If you need help selecting the right homogenizer for your homogenization process, contact us today. Our high pressure homogenizers are customized to suit your own unique needs with multiple mechanical forces that create thoroughly mixed products.

And for additional information, you might also like to download our FREE eBook: "How to Achieve Efficient & Consistent Particle Size Reduction." In it, we show how equipment that reduces particle size saves you money by extending shelf life and strengthening biophysical properties. 

New Call-to-action

Six Tips for Ensuring Safety When Using Your High-Pressure Homogenizer

Posted by Deb Shechter on Jul 12, 2018 10:30:00 AM

high pressure homogenizerSafety first. It’s a phrase you hear fairly often, and although it may seem unnecessary to repeat, it’s especially important when working with large machines or those with many parts. When not used correctly, these machines can not only fail to produce an optimal product but also cause injury. 

Homogenizers fit into this category, so we’re offering the following tips on how to use yours and the samples it produces both safely and effectively:

1. Wear the appropriate protective equipment.

As with any such machine, these elements are designed to keep the user safe from moving parts and any hazardous chemicals. Whether it’s gloves, eye goggles or even ear plugs, investing in these accessories can keep you from damaging any part of your body, especially your eyes and ears. Some high-pressure homogenizers can reach 85 dBA and potentially cause ear damage.

2. Follow operating instructions and regulations.

There are safety laws and guidelines produced by unions and the government for a reason. These rules are designed to keep you safe while ensuring the machine you’re using is working as it was designed to do. To make sure you always have your high-pressure homogenizer’s instruction manual when you need it, keep it with the machine, and store a copy with your other important documents.

3. Use only the parts that came with your high-pressure homogenizer.

The parts that make up your high-pressure homogenizer are designed to work together and should not be substituted with another accessory or attachment. Failure to follow this rule may cause your product to work at a decreased level or even break, often voiding your warranty.

4. Avoid contact with the rotating shaft and homogenizing head.

Contact with either of these sharp parts can cause injury, so make sure you always switch the machine off before cleaning it or changing screens. Be especially careful when handling your high-pressure homogenizer after it has been contaminated with dangerous samples.

5. Let only trained operators handle your high-pressure homogenizer.

When installing or operating your homogenizer or simply doing maintenance on it, have only those trained to do so perform the task. Improper handling can cause both machine malfunction and minor injury to the handler.

6. Follow common electrical precautions.

Again, these rules are in place for a reason, and failing to follow such rules may result in electrocution or shock.

BEE International: Putting Safety First

At BEE International, our line of equipment is suitable for virtually every industry and can work in just about any environment, letting you focus on other important projects. Plus, we work with you to make sure you understand the appropriate safety precautions and provide training for all our products. To learn more, please contact us today.New Call-to-action

Homogenizers and the Forces That Drive Them

Posted by Deb Shechter on Jun 25, 2018 11:30:00 AM

forceForce sounds like a very scientific term, but it basically consists of pushing, pulling and gravity. Pushes and pulls set things in motion, while gravity pulls down everything on earth. The six kinds of forces that act on objects when they come into contact with one another are: normal, applied, frictional, tension, spring and resisting.

In high-pressure homogenization, mechanical forces enhance the effectiveness of utilizing extremely high operating pressures. The combination of four main forces – cavitation, high shear, impact and turbulence – are used with high pressure to achieve particle size reduction, cell lysis and/or effective emulsification.

Cavitation

Cavitation occurs when a high amount of pressure is exerted on a liquid sample. Pressure enables the liquid to achieve high kinetic energy, thereby increasing velocity. Also sometimes described as the formation of liquid-free spaces within a liquid, cavitation is especially useful for particle reduction and can be intensified or reduced by adjusting the size of a high-pressure homogenizer’s nozzle.

Although homogenization can be accomplished without cavitation, it increases the efficiency of the process. In the food industry, cavitation in homogenization breaks up large fat globules to create a stable emulsion for increased shelf life and improve taste and texture.

High Shear

High-pressure homogenizers work through shear force, which can be created when a tangential force is applied to a sample. Homogenization using high shear allows for even further reduction of particle size by mixing two normally immiscible phases, such as with water-in-oil (w/o) or oil-in-water (o/w) emulsions.

Many high shear mixers are used to reduce particle size, but high-pressure homogenizers are able to attain even higher shear rates. This is especially important when a dispersion is required.

Impact

The force of impact works in homogenization to reduce the particle size of solids into liquids and achieve lysis of difficult-to-disrupt cells and other materials though the use of grinding beads. Dounce and Potter-Elvehjem homogenizers use only the force of impact to lyse cells, while the French press counterpart adds in high shear. The ability of high-pressure homogenizers to combine multiple forces offers manufacturers better yield in fewer passes and a lower time requirement. Along with other mechanical forces, impact can be fine-tuned to accommodate a specific sample.

Turbulence

In the overall homogenization process, turbulent premixing is the stage designed to prepare a sample by mechanically loosening bonds. By high-pressure machines like stirrers and agitators putting a sample through turbulent premixing, the homogenization process is easier and more time-efficient.

Another influence in homogenization is process intensity; higher intensity is used to obtain smaller particle sizes in fewer passes. Though not all homogenizers are equipped with adjustable process intensities, those from BEE International allow for increased or reduced process intensity with only the turn of a dial.

BEE International: The Driving Force Behind the Best High-Pressure Homogenizers

Unlike other technologies which apply one mechanical force to mix a product, BEE technology utilizes all available mechanical forces to achieve optimum results. We synergistically combine and fine-tune these forces to produce the best possible product for you and let you produce a tight distribution of small, uniform particles every time. Contact us to learn more!

For more information on key factors to consider when choosing a cell lysis method, download our FREE eBook:

New Call-to-action

Particle Size Reduction: Processes and Products

Posted by Deb Shechter on May 8, 2018 2:30:00 PM

particle size reductionBigger is not always better. For instance, many electronic gadgets that have come out over the past few years have a smaller, more streamlined design. Most people want to lose weight to become smaller. Also, I’m glad pests like spiders and cockroaches are as small as they are.

Multiple industries and manufacturers need to be able to reduce the size of particles to achieve their preferred end-product. It affects a product’s color, taste, chemical reaction, density and more. For example: reduced particle size enables creams and lotions to absorb into the skin more rapidly, which is extremely important in the pharmaceutical and cosmetic industries.

Key benefits of particle size reduction include:

  • Increased dissolution rate

  • Improved drug delivery

  • Cleaning product health and safety

  • Controlled rate of reaction

  • Greater sedimentation stability

  • Consistent product texture and appearance

  • Improved mineral processing 

Preferred Product for Particle Size Reduction

One of the most widely utilized methods for particle size reduction is high-pressure homogenization. It uses mechanical force to break down particles or droplets in a liquid into smaller and more uniform sizes, resulting in a dispersion, which is where fine particles of one substance are scattered throughout another substance. Dispersions can be further classified into solutions, suspensions and colloids, a mixture somewhere between a solution and a suspension.  

Some high-pressure homogenizers can reduce particle size to as small as a single-digit nanometer. Plus, they ensure the composition is equal throughout, and the overall molecular makeup of the sample isn’t compromised.

Selection Criteria

How do you know what homogenizer is best for your company’s specific needs? The first consideration is what type of product you need. Which one you select will vary based on whether you want to use it for a specific product or for more general use. identifying the key product(s) you want produce should help guide you in choosing the most suitable homogenizer.

Once you narrow down the product(s), you’ll want to decide what features and capabilities you want in a homogenizer. Depending on whether your product(s) and process requires mechanical forces (like shear, cavitation or impact), high pressure, temperature change or another parameter altogether, you should identify the technical operations needed to make sure you choose the right machine for your needs.

The BEE International Difference

Unlike a hammer mill which uses only one mechanical force (impact), BEE International’s patented homogenization technology utilizes all available mechanical forces. We synergistically combine and fine-tune all available mechanical forces, including turbulence, cavitation, shear, impact and process intensity, to produce the best possible product for you. In addition, we produce a tight distribution of small, uniform particles every time.

Depending on your product, benefits of our products include a longer shelf life, increased bioavailability, improved sensory characteristics and greater productivity along with lower manufacturing costs due to fewer passes. Our laboratory, pilot and industrial homogenizers all produce reliable and consistent particle size reduction. 

Contact us today to see how we can meet your homogenization needs! To learn more about how to achieve efficient and consistent particle size reduction, download our FREE eBook:

New Call-to-action

Oil-in-Water and Water-in-Oil Emulsions: What's the Difference?

Posted by Deb Shechter on Apr 24, 2018 10:30:00 AM

oil in water and water in oil emulsionsYou’ve no doubt heard the phrase “Oil and water don’t mix.” It’s basically a way of saying certain items or people do not go well together. However, oil and water can mix with the right ingredients – specifically, emulsifiers. Emulsifiers prevent oil and water from separating by establishing a barrier that protects the droplets.

When oil and water are mixed powerfully, they form either oil-in-water (o/w) or water-in-oil (w/o) emulsions. In o/w emulsions, oil is dispersed in a continuous water phase, while in w/o emulsions, water droplets are dispersed in oil. The result of an emulsion of oil and water mix is depended on the volume fraction of both phases and the kind of emulsifier utilized. You can actually tell the difference between the two by measuring the electrical conductivity of the emulsion. If there is no conductivity, it’s an w/o emulsion.

Both o/w and w/o emulsions have unique applications and chemical properties, and you can better choose the type you want to use if you know more about these differences. In this blog, we’ll provide some characteristics of o/w and w/o emulsions and describe some of the differences between the two.

Oil-in-Water Emulsions

Used in moisturizing products and food products such as milk, mayonnaise and vinaigrette, o/w emulsions contain a low oil concentration. They are mixable with water, non-greasy, non-occlusive and will absorb water. The dispersion medium in these emulsions is water; o/w emulsifiers keep oil drops packed in water.

Water-in-Oil Emulsions

These emulsions are utilized in products including butter, margarine, cold cream and cod liver oil and are especially useful in products designed for dry or sensitive skin. Common w/o emulsifiers are sorbitan stearate, polyglyceryl oleate, lecithin, sorbitan monooleate and lanolin. Sometimes referred to as an inverse emulsion, w/o emulsions mix more easily with oils and have a high oil concentration. Producing w/o emulsions is more difficult than developing their o/w emulsions.

Following are three additional differences between o/w and w/o emulsions:

1. Suspended vs. continuous phase

The biggest difference between o/w and w/o emulsions is which phase is suspended and which is continuous. Oil and water are normally immiscible, but with proper mixing and stability agents, a permanent mixture, or emulsion, can be achieved. Smaller droplet sizes will enhance the effectiveness of either system; this may translate to increased bioavailability in pharmaceutical products or extended shelf life in food/beverage products.

2. Type of product that can be created

The chemical nature of an o/w emulsion is distinct from that of a w/o emulsion; each is most effectively used in different products. O/w emulsions are the basis of water-based products; in the pharmaceutical industry, they can be found in creams like moisturizers and topical steroid products. In contrast, w/o emulsions make up oil-based products like sunscreen and most makeup.

3. How to achieve stability 

Stability is key when considering an emulsion synthesis technique; without it, the two phases will separate, and the product will have lower function. All emulsions require an emulsifier to assist with stability. O/w emulsions typically require more than one emulsifier, and they can be acquired separately or in a pre-mixed cocktail. In contrast, while w/o emulsions only require one emulsifier, there is a limited number from which to select because the hydrophilic balance must be in a narrow range. 

Emulsions, emulsifiers, homogenization and other terms can be confusing, but at BEE International, we can steer you in the right direction based on your specific business needs. Simply contact us to learn more!

Check out our FREE animation on how our technology can be customized for your application for efficient and consistent results:

New Call-to-action

High-pressure Homogenizers: Enhancing Oil Emulsification

Posted by Deb Shechter on Mar 30, 2018 10:30:00 AM

high-pressure homogenizersYou might not think your daily life involves emulsions unless you work in a scientific field. However, emulsions and the products of which they are a part are found in a variety of industries, from pharmaceuticals and food manufacturing to metal processing and more. For example, milk and butter are emulsions found in daily life, and emulsions are responsible for enhancing both the textural and visual properties of medicated creams.

So what exactly is an emulsion? Basically, it’s a mixture of oily and watery liquids. There are two primary kinds of emulsions: oil suspended in water (o/w) and water suspended in oil (w/o). Both are inherently unstable and require force and functional chemicals, otherwise known as emulsifiers, to break apart oil droplets in order to mix with watery liquid. Following are three main differences between o/w and w/o emulsions: 

Suspended vs. continuous phase

Probably the most basic yet significant difference between o/w and w/o emulsions is which phase is suspended and which is continuous. Oil and water are normally immiscible, but a permanent mixture or emulsion can be achieved with the use of proper mixing and stability agents. In this case, smaller droplet sizes improve the effectiveness of either system, which may translate to increased bioavailability in pharmaceutical products or extended shelf-life in food/beverage products.

Type of product that can be created

O/w emulsions are the basis for water-based products; in the pharmaceutical industry, they can be found in creams like moisturizers and topical steroid products. W/o emulsions, though, form oil-based products such as sunscreen and many types of makeup.

Method used to achieve stability

All emulsions, whether w/o or o/w, require an emulsifier to assist with stability. O/w emulsions typically require more than one emulsifier, and they can be acquired separately or in a pre-mixed cocktail. In contrast, while w/o emulsions need one emulsifier, there are a limited number from which to select because the hydrophilic balance must be in a narrow range (3-6).

Again, due to the fact that water and oil are immiscible, powerful mixing is essential to conducting oil emulsification. Therefore, specialized machines such as high-pressure homogenizers, which work by forcing a sample through a narrow space and employing multiple forces, including turbulence and cavitation in addition to high pressure, are preferred. They not only impart high shear but also are able to reduce particle sizes much more efficiently than other blending and emulsification methods. In fact, high-pressure homogenizers can reduce droplet size to under one µm, produce more consistent emulsions and reduce creaming rate, thereby boosting the shelf-life of the emulsions.

Additional benefits of high-pressure homogenization for oil emulsification include production of stable emulsions, improved product consistency, shelf-life, texture, color and flavor and the ability to overcome the resistance caused by two immiscible liquids. Also, most high-pressure homogenizers currently manufactured offer reduced maintenance and reduced vibration and noise.

BEE International: Bringing the Benefits of Homogenization Straight to You

We know there are other providers of homogenization equipment, but at BEE International, our expertise, industry experience and level of customer service place us above the rest. Whatever your business needs, we have the product(s) to meet and exceed them. For more information, please contact us today.

For more information on how to achieve efficient and consistent results for your application, check out our FREE animation:

New Call-to-action

How Does RNA Extraction Homogenization Work? 

Posted by Deb Shechter on Jan 25, 2018 11:30:00 AM

RNA extraction homogenizationMany people are familiar with the term “DNA,” which is the hereditary material in humans and almost all other organisms. Officially named deoxyribonucleic acid, it a molecule that carries the genetic instructions used in the growth, development, functioning and reproduction of all known living organisms and many viruses.

Not as well known outside the field of science is RNA or ribonucleic acid. RNA, a type of nucleic acid containing only one strand (DNA is primarily double-stranded), provides the link between the genetic information through protein synthesis. Procuring high-grade RNA, which is accomplished through a process called RNA extraction (or isolation), is the first step for a multitude of molecular techniques often utilized in gene expression including microarray analysis, real-time polymerase chain reaction (PCR), digital PCR, northern analysis and cDNA library construction.

RNA Extraction

Using a powerful chaotropic salt solution, RNA extraction purifies RNA from biological samples by quickly disrupting cells or tissue to release the nucleic acids from the cells. These released RNAs are valuable in providing details on which genes are expressed (used to make products), to what degree the genes are active, how they work to regulate each other via small, regulatory RNAs and which structural RNAs (i.e. rRNAs, mRNAs and tRNAs) are produced.

RNA extraction can be very challenging due to the difficulty of isolating RNA that is intact. This is in large part because of ribonuclease (RNase) enzymes found in cells, enzymes which are copious in the environment and can swiftly degrade RNA. Therefore, it’s vital that it be done cautiously and in a timely manner.

Homogenization – Organic RNA Extraction

The disruption of cell and tissue samples, often achieved by homogenization, is a required part of extracting RNAs and preventing their degradation. In fact, samples aren’t guarded from RNA degradation unless they are entirely homogenized. Although homogenization is especially functional for use with soft tissues, the method used should be based on the sort of cell or tissue. For instance, plant and animal tissues, yeast and bacteria typically require more exacting disruption methods. Either way, the sample or tissue should be kept frozen until it is ready to be homogenized.

Utilizing homogenization for RNA extraction is especially beneficial because it enables processing to be effectively and repetitively processed in only seconds, thereby eliminating heat production. Its force and high pressure produce consistent and uniform samples, and it can process both small and large samples. Plus, homogenizers are scalable and compatible with many sample types, including those with tough cell walls.

BEE International – Offering Simple Solutions for Complex Business Needs

We offer a number of top-of-the-line high-pressure homogenizers to achieve your business goals, and our scalable equipment is easy to use and produces better results in fewer passes. In addition, we’re globally recognized by laboratory managers and researchers for our high-quality products and excellent customer support. Contact us today to discuss your homogenization needs.

For more information on how to achieve efficient and consistent particle size reduction, download our FREE eBook:

New Call-to-action

Liquid Mixers vs High Pressure Homogenizers: Which Is Right for You?

Posted by Deb Shechter on Dec 6, 2017 11:30:00 AM

liquid mixersIt’s not uncommon for terms or even buzzwords in various industries to be similar but have different applications. For example, in the healthcare industry, electronic medical and electronic health records may sound the same. However, electronic medical records (EMRs) are a digital version of the paper charts in the clinician’s office that contain the medical and treatment history of the patients in one practice, while electronic health records (EHRs) focus on the total health of the patient, provide a broader view on a patient’s care and are designed to share information with other healthcare providers.

Similarly, though the terms “liquid homogenization” and “high-pressure homogenization” appear comparable, each has its own characteristics and primary uses. Homogenization in general can be defined as the reduction of particle size of any given molecule and is a process utilized often in the pharmaceutical, biotech, cosmetic and pharmaceutical industries. Its benefits include more even particle distribution, improved texture and enhanced appearance and taste.

Liquid homogenization, achieved by using a liquid mixer, and high pressure homogenization offer similar outcomes yet use distinct processes. The mixing processes and mixer designs chosen are determined by the nature of the materials to be mixed. Essentially, the type of product you select for your laboratory depends on its downstream applications and the cell types being used. 

In this blog, we’ll describe the differences between liquid and high-pressure homogenization and list pros and cons of each to help you decide which one is best suited to your business needs. Whichever you choose, it’s important that it has the flexibility to meet the various needs of a laboratory. 

Liquid Homogenization

Widely used for cell disruption of cultured cells and small sample volumes, liquid homogenization requires a sample to manually be forced through a narrow space, thereby shearing membranes and decreasing particle size. There are three most common types of liquid mixers used: the Dounce homogenizer (used for gently lysing single cell suspensions), Potter-Elvehjem homogenizer (used with delicate tissues) and the French press (used for small sample volumes). In addition to being suitable for operation at higher temperatures and easy to maintain, liquid mixers offer enhanced repeatability and a lower power requirement. Nevertheless, the throughput from all three models is fairly low, and they may not provide enough scalability. 

High-pressure Homogenization 

Utilized for numerous products from the chemical and biotechnology industries and products such as pharmaceutical tablet coatings, vaccinations and creams, high-pressure homogenization uses multiple mechanical forces (such as turbulence, cavitation and shear) along with intensive pressure to achieve micronization and membrane lysis. Similar to liquid mixers, high-pressure homogenizers work by forcing cell suspensions through a very narrow channel under pressure. Unlike the manual requirement of liquid homogenizers, though, high-pressure units run automatically and are often made to be scaled from laboratory experimentation to manufacturing.

Benefits of high-pressure homogenization include an increased rate of dissolution, ease of operation, cost and time effectiveness, consistency in composition of products, greater stability of final products due to a stable emulsion and upgraded scalability and repeatability. High-pressure homogenization also has the ability to reduce particle size to levels that are not achievable by most other mixing processes. Because they tend to be large and very heavy, high-pressure homogenizers are typically used for large volume processing and consume more power than liquid mixers. They sometimes require more complex cleaning, cannot handle large particles or high-fiber materials and aren’t the most suitable for high temperature materials. 

BEE: The Industry Leader in High-Pressure Homogenizers

BEE International offers a wide variety of high pressure homogenizers to meet the needs of virtually any industry. Unlike liquid mixers, our homogenizers are suited for large samples and offer large throughputs, making them ideal for laboratory, pilot plant and even industrial use. In addition, our easy-to-use equipment produces higher yield in less time and utilizes multiple forces – shear, turbulence, impact and cavitation – to allow for results that are reliable, repeatable and high quality.

There are plenty of companies on the market to select equipment from; however, the product can be of higher quality and more even consistency when run through top-shelf equipment, most frequently in the form of a homogenizer. BEE International Technologies is trusted by researchers around the world for both our laboratory homogenizers and associated customer support. Learn about how BEE’s products can maximize your homogenization processes by contacting us today. 

For more information on how to choose the right cell lysis method for your application, download our FREE eBook:

New Call-to-action

How to Select a Homogenizer for Chemical Applications

Posted by Deb Shechter on Oct 31, 2017 11:30:00 PM

Portrait of a smiling scientist with colleagues at work in the laboratory-280003-edited.jpegHomogenization, also known as particle size reduction or micronization, is used across many industries – including pharmaceutical, chemical, food, and cosmetic -- to create stable emulsions and dispersions. While there are a number of machines that can perform the task of homogenization, it is important to choose the right homogenizer to ensure the best result with the highest level of quality. Continue reading to learn more about some important things you should look for when choosing a homogenizer for chemical applications.  

Dispersion Creation

Dispersions, also known as suspensions, consist of solid particles distributed throughout a continuous medium. Examples of dispersions include polymers, petroleum additives, paints, and acrylics. It is important to create high quality dispersions in the production of these items to ensure maximum particle packing, increased conductivity, and improved overall surface quality.  High quality dispersions results in a higher quality end product, which almost always translates to a better bottom line.

Particle Size Reduction Capabilities

When choosing a homogenizer, it is important to choose a high pressure homogenizer that can efficiently and readily decrease particle sizes. This process, also known as micronization, results in smaller particle sizes, which help facilitate easier dissolution, increased product stability, and higher overall quality. This results in increased customer satisfaction as well as reduced costs of production.

High Pressure Homogenizers from BEE International

BEE International offers a number of high pressure homogenizers to meet the needs of virtually every industry. Our homogenizers, which include the Nano DeBEE and Micro DeBEE, just to name a few, are ideal for just about any environment, including laboratory and R&D settings, pilot plants, and industrial manufacturing zones. In addition, our homogenizers offer the following benefits and features:

  • Ability to scale to manufacturing
  • Unique processing set-ups to address specific processing challenges
  • Dual Feeds to allow for the addition of abrasive and viscous materials
  • Dual Jets that are capable for reducing particle sizes for the hardest of materials
  • Pressurized feeds that allow formation and dispersion of final products in one step
  • Increase in dense cross section of final products
  • Better particle coating during formulations

Contact us today to learn more about our high pressure homogenizers and how they can help with particle size reduction in your industry. If you’re looking to achieve particle size reduction efficiently and consistently, download our FREE eBook below:

New Call-to-action

How to Care for Your Homogenizer Equipment

Posted by Deb Shechter on Oct 27, 2017 11:30:00 AM

homogenizer equipment.jpgHomogenization, also known as particle size reduction or micronization, is used across many industries – including pharmaceutical, chemical, food, and cosmetic -- to create stable emulsions and dispersions. And while this technology has proven – and continues to prove – to be very powerful and useful, the homogenization process is only as good as the equipment that is used to undergo the process. For this reason, it is critically important to properly care for your homogenizer equipment. Continue reading to learn more about how to care for your homogenizer equipment so you can reap the benefits of its many features for years to come.

Well-cared for homogenizers can last for many years, but only if they are properly maintained. High quality homogenizers – like the ones sold by us here at BEE International – should be on a regular maintenance schedule to ensure continuous working condition. In addition, it is important that your homogenizer is not immersed in water or exposed to harmful fumes.

In addition, there are a number of preventive maintenance tasks that should be regularly completed with your homogenizer:

  • Regular replacement of motor unit brushes
  • Lubrication of bearings using a liquid sample/medium
  • Regular exterior cleaning of your homogenizer (using just soap and water is sufficient).

High Pressure Homogenizers from BEE International

BEE International offers a number of high pressure homogenizers to meet the needs of virtually every industry. Our homogenizers, which include the Nano DeBEE and Micro DeBEE, just to name a few, are ideal for just about any environment, including laboratory and R&D settings, pilot plants, and industrial manufacturing zones. In addition, our homogenizers offer the following benefits and features:

  • Ability to scale up from research and development to manufacturing
  • Unique processing set-ups to address specific processing challenges
  • Dual Feeds to allow for the addition of abrasive and viscous materials
  • Dual Jets that are capable for reducing particle sizes for the hardest of materials
  • Pressurized feeds that allow formation and dispersion of final products in one step
  • Increase in dense cross section of final products
  • Better particle coating during formulations

Contact us today to learn more about our high pressure homogenizers and how they can help with particle size reduction in your industry. If you have any additional questions about proper maintenance for your BEE Homogenizer, please don’t hesitate to reach out to a member of our team.

Learn More About Homogenizer Applications

Whether you are trying to lyse cells more efficiently or reduce particle size more consistently, we have FREE eBooks written to help you achieve both goals. Download each by clicking on their covers below:

beei-ebook.jpghow-to-achieve-efficient-and-consistent-particle-size-reduction.jpg