What Is Emulsification and How Is It Used in Cannabis Production?

Posted by Deb Shechter on Aug 26, 2020 9:15:00 AM

Bee International helps cannabis producers with emulsification to create a superior productThe legal cannabis industry is a multibillion dollar enterprise that rests largely on the quality of the cannabis plant’s active components. Called cannabinoids, these chemical compounds — when effectively harvested and processed — are capable of bonding with receptors in our bodies and have the potential to produce anti-inflammatory, analgesic, euphoric and/or calming effects. Indeed, cannabinoids have been used by humans, both clinically and recreationally, for thousands of years, suggesting they are safe to consume with many beneficial properties.

But just because humans have a history of safely using cannabis products, it doesn’t mean that all cannabis products are created equal. Changes to federal and state laws have decriminalized cannabis use and relaxed criminal mandates in many areas of the country, allowing more and more players to enter the CBD and cannabis market. The result: a plethora of products but few standards. Yes, most states regulate the manufacture of cannabis products, but many lack even minimum requirements for potency, safety and/or testing; consumers are simply at the mercy of manufacturers, hoping they actually get what they pay for.

To better guarantee the quality and effectiveness of their products, reputable manufacturers work to create their own production processes that both sustain and maximize cannabinoid stability and bioavailability and deliver reliable results — in this case, medicines and products that are capable of provoking specific physiological effect(s) — each and every time. They do that by emulsifying the cannabis during production. Here’s how it works:

What Is Emulsification?

Emulsification is the mixing together of two or more substances that wouldn’t normally be able to combine. A chef vigorously whisking oil into vinegar to make a dressing is an example momentarily of a mix, but within seconds separation occurs. Emulsification adds an emulsifying agent, something that successfully binds the oil and water phase together without separation.

Cannabis manufacturers also use emulsification to ensure that the cannabinoids they extract from cannabis plants are able to be incorporated into viable products — drinks, creams, edibles and more that taste, look and/or smell good and that deliver the same results with each production run. The stability of these products, part of which is determined by the length of time the components do not separate, extends shelf life and expiration date.

How Are Homogenizers Used in Cannabis Production?

The process starts with the harvesting of the cannabis plant. From there, a manufacturer must extract the cannabinoids, basically a sticky syrup that is then refined, purified and distilled (or separated) from compounds that aren’t needed, such as terpenes, flavonoids and other contaminants. It is this resulting substance — an oily, bitter isolate that naturally repels water — that necessitates the emulsification process. At this point, the cannabinoid isolate is exposed to mixing equipment that uses one or more forces to break apart the chemical bonds of the cannabinoids and reduce the size of their particles.

Homogenization is the ideal mixing method. It is an in-line process, which means that all particles undergo the same mixing forces and there is less variation in the results. This eliminates “hot spots “in the end product. Homogenization is also an efficient mixing process, which means less time to produce a better effect.

Why BEE International Homogenizers Are the Best at Emulsifying

Typical emulsifiers use only one type of force, but a BEE International homogenizer uses multiple forces (turbulence, cavitation, shear and impact) to break apart and reduce particles. This creates smaller particles, maximizing the surface area of the cannabinoids.

BEE International homogenizers are versatile, with the ability to deliver a gentle mix to the most intense mixing process with up to 45,000 PSI. The intensity breaks product particles into the smallest size, down to nanometers. Smaller particles make it easier for their particles to completely mix, stay mixed with the aid of an emulsifier and deliver a product that is shelf stable and ready to be used. Smaller particles also increase potency and bioavailability up to 75%.

Only BEE International homogenizers have an option to eliminate the need for pre-mixing. This increases the efficiency and ease of the manufacturing process with less equipment and fewer manufacturing phases.

To learn more about the benefits of our patented Emulsifying Cell (EC) technology, as well as our proprietary systems, please contact us. We can help you choose equipment that guarantees safe and effective products, enabling you to stand superior to the competition and offer the most benefits to consumers.

 

download cannabis ebook 

Why Homogenizers are Essential to CBD Processing

Posted by David Shechter on Jun 30, 2020 10:00:00 AM

CBDFor many business leaders, the CBD industry represents an exciting investment opportunity. Indeed, one major player opened 70 new CBD store locations in 2019 alone. And experts predict that the industry as a whole will continue to grow over the next few years. However, it’s important that businesses involved in CBD processing and the manufacturing of products like lotions, edibles, and extracts understand how to ensure efficient and uniform production standards. This is crucial for business reputation, customer satisfaction, and ROI. Here, we’ll explain why high-pressure homogenizers are essential to this process, and how CBD-based companies can benefit from using them: 

Cannabinoids

Cannabinoids are the chemical compounds found within the cannabis plant. Crucially, they represent the active ingredient in CBD products. In order to create a CBD product, manufacturers harvest cannabis flowers, reduce them to first unrefined and then refined oils, and then process the oil into a single compound known as cannabinoid isolate.  

The problem at the next, and final, stage of the process is that cannabinoids are hydrophobic –– meaning that they don’t mix with water. So it can be very difficult to evenly and efficiently incorporate cannabinoids into a finished CBD product. 

As such, CBD manufacturers must use emulsifiers to create oil-in-water emulsions involving cannabinoids. From there, they are able to form micro-emulsions, nano-emulsions, or liposomes, which are effectively combinations of hydrophobic and hydrophilic materials. Ultimately, this enables effective mixing of CBD and non-CBD compounds within a given product.

How Homogenizers Work

Generally speaking, the quality of an emulsion depends on the quality the mixing method employed. This is where high-pressure homogenizers stand above other mixing options. Most mixing equipment uses all of the three following methods to form stable emulsions: 

  • Impact –– high forces applied over a short period of time.

  • Slice/Tear ––  motion between adjacent layers of liquid.

  • Cavitation –– rapid pressure changes. 

High-pressure homogenizers are unique in that they employ all three methods at the same time. This ensures effective particle-size reduction –– a crucial aspect to quality control and production in any mixture. The smaller the particles are, the more even the mixture is and the higher its bioavailability becomes. 

Benefits to Using Homogenizers for CBD Processing

Because homogenizers so effectively emulsify and mix CBD substances, businesses are able to guarantee quality control every time they produce a new batch of products. The homogenization process eliminates “hot spots” –– or collections of CBD compounds within a mixture –– thus creating evenly distributed mixtures every time. 

What’s more, high bioavailability maximizes the potency of CBD products. So businesses are able to deliver high-quality products while using lower amounts of active ingredients. Bolstered bioavailability also contributes to faster-acting CBD products, and more stable CBD products that have a longer shelf-life. All told, high-pressure homogenizers can increase bioavailability by up to 75%.

In summation, using homogenizers to complete CBD processing boosts ROI, reduces costly inefficiencies, creates high-quality, potent, long-lasting products, and –– in all likelihood –– will improve customer satisfaction as well. 

Contact Us

BEE International has been a leading provider of high-pressure homogenization solutions for decades. Not only is our equipment cutting-edge and versatile, but we’ve also added cannabis-specific innovations to our process based on customer feedback. For more information, you can check out our eBook on cannabis products. Or, to get started with us today, contact us here.

download cannabis ebook

Does Vitamin D Boost Immunity Against COVID-19?

Posted by Deb Shechter on Jun 25, 2020 1:26:19 PM

vitamin d and covid-19Researchers are studying patient data looking to for a correlation between low vitamin D levels and COVID-19 mortality rates and indicate a link between vitamin D deficiency and COVID-19 severity and mortality. Vitamin D is known to strengthen immunity and prevent overactive immune responses.

Fat soluble vitamins (A, D, E, K) are crucial for human health. The addition of these vitamins into foods, pharmaceuticals, supplements and topicals is challenging due to solubility, bioavailability and stability issues. There is a tremendous need to make water soluble emulsions out of these vitamins to improve the behavior in the biological system. BEEI technology provides a way to produce repeatable, homogeneous stable nano emulsions, micro emulsions, or liposomes of fat soluble vitamins. These emulsions are critical for effectively incorporating additives such as Vitamin D into products.

BEE (Best Emulsifying Equipment) International’s high-pressure homogenization technology differentiates from other homogenizers and mixers in delivering constant and controllable energy to the process. BEE’s technology produces homogenous smaller and stable particles which has a significant impact on rate of absorption and total bioavailability. BEE International’s equipment is known for creating emulsions and liposomes made of two immiscible liquids that are stabilized by an emulsifying agent. Specifically this equipment is used to create emulsions and liposomes with higher bioavailability and longer shelf life.

For this reason, BEE International equipment enables vitamins such as Vitamin D to be incorporated into oil or lipids effectively improving the efficacy of vitamin D delivery. Contact us to learn more about how we can help.

 

Contact Us

 



1. Petre Cristian Ilie, Simina Stefanescu, Lee Smith., The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Received: 30 March 2020 / Accepted: 15 April 2020.

2. Frank H. Lau, Rinku Majumder, Radbeh Torabi, Fouad Saeg, Ryan Hoffman, JeffreyD.Cirillo, Patrick Greiffenstein, Vitamin D insufficiency is prevalent in severe COVID-19. doi: https://doi.org/10.1101/2020.04.24.20075838.

Vitamin D Insufficiency and Severe COVID-19 Cases: What's the Relationship?

Posted by Deb Shechter on Jun 23, 2020 6:38:38 PM

vitamin d and covid-19COVID-19 is a global pandemic and scientists are looking for factors and indicators that may protect the public. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality,1 a publication by Petre Cristian Ilie, Simina Stefanescu, Lee Smith, studies this topic providing relevant data. The study reveals that in Louisiana, African Americans account for 70% of COVID-19 deaths despite representing only 32% of the population.2 The study also notes that VDI affects 80-90% of the African American population.

In a Boston homeless shelter, 100% of 147 COVID-19 positive subjects were asymptomatic.3 Homeless persons generally have poorer health and nutrition, but can have greater exposure to sunlight, the source of 80-90% of the body’s vitamin D6.

Vitamin D is a nutraceutical agent, which is necessary for good health, particularly normal growth and development of bones and teeth, as well as improved resistance against certain diseases. However, the sufficient amount of this vitamin needed for daily intake is not found in most foods which leads to many producers choosing to develop vitamin-enriched products. Strategies to increase the bioavailability of Vitamin D are sought. Several peer reviewed publications link a more stable emulsion to higher bio-availability of Vitamin D. Oil in water emulsions and liposomes are considered as the best approach to effective nutraceuticals.

O/W Emulsions or liposomes with a tighter distribution of smaller particles known to create a more homogeneous solution with longer shelf life. Product manufacturers seek the ideal homogeneous emulsion which entails formulation, minimum particle size and uniform dispersion of particles. High Pressure Homogenizers are the most efficient fluid processing equipment for creating these liposomes, nano and micro emulsions. BEE (Best Emulsifying Equipment) is renowned for their high-pressure homogenizers which are designed for sanitary particle size reduction to create stable emulsions.

BEE International technology is scalable, so the results produced on the smallest R&D device can be reproduced on the largest manufacturing equipment. This is crucial for industries needing to fast track formulations from R&D to clinical trials to manufacturing.

Contact Us

 



1. Petre Cristian Ilie, Simina Stefanescu, Lee Smith., The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Received: 30 March 2020 / Accepted: 15 April 2020.

2. Frank H. Lau, Rinku Majumder, Radbeh Torabi, Fouad Saeg, Ryan Hoffman, JeffreyD.Cirillo, Patrick Greiffenstein, Vitamin D insufficiency is prevalent in severe COVID-19. doi: https://doi.org/10.1101/2020.04.24.20075838.

How BEE International is Helping Scientists Develop a Coronavirus Vaccine

Posted by Deb Shechter on May 1, 2020 7:42:10 PM

covid-19 vaccine development Doing our part to equip scientists with the tools they need to produce a COVID-19 vaccine as fast as possible.

The COVID-19 pandemic has affected nearly every aspect of society –– from the way businesses operate to the way individuals spend their own free time. We are currently living in an unprecedented moment, and, while measures like social distancing can slow the spread of the virus, only a vaccine will be able to effectively halt its progress. The development of a vaccine for COVID-19 could save millions of lives and help prevent the suffering of countless others.

At BEE International, we’re committed to doing our part to equip scientists with the tools they need to combat COVID-19 and to produce a vaccine as fast as possible. We are the leading manufacturer of high-pressure homogenizers, which can play a crucial role in developing a vaccine for COVID-19.

 

Researching COVID-19 Therapies and Vaccines

Vaccines stimulate the immune system to create antibodies meant to combat a virus or bacteria.

In order to produce a vaccine, scientists must generate an antigen. This is typically done by growing small amounts of a virus in various cells. From there, scientists can isolate the antigen (in this case the virus) from other materials such as proteins. After that, scientists will then attempt to purify and strengthen the antigen to produce an eventual immune-system response. The final step of the vaccination development process is scaling up to widespread distribution.

 

Homogenization

Homogenization is all about breaking particles apart. High-pressure homogenization involves blending, grinding, and/or mixing substances to reduce particle size and rupture cells.

Homogenization plays a part in vaccine research and manufacturing on two fronts:

  • Cell disruption, also known as cell rupture and cell lysis, gently breaks open the cell walls to harvest naked intracellular viruses. Additional particles of the virus can sometimes be found in the extracellular materials as well. Homogenization disrupts cells to obtain a high yield of virus without damage or alteration.
  • Water-in-oil emulsions serve as the carrier of vaccines –– the means to transport the medicine into the body and to induce the desired immune response. The stability of such emulsions greatly affects vaccine safety and efficacy. Homogenization is the most rapid and convenient method for creating emulsions that can form aggregates. In turn, those aggregates can be transported into the body and stably release therapies for the induction of immune response.

 

A small particle size, ideally in the nano range, within the emulsion has increased benefits in terms of rapid delivery and absorption. High-pressure homogenizers are best suited to reduce particle size. Highly controllable and efficient BEEI technology is ideally suited to develop the most efficient protocol

Entering into the development of vaccines and therapeutics, it is critical to select R&D instruments that can quickly scale up for manufacturing purposes. Thankfully, BEE Homogenizers are highly scalable. That means the same results created in the laboratory can be reproduced in pilot and manufacturing stages as well. Our homogenizers are also designed for sanitary applications and meet industry standards, validations, and regulations.

 

Conclusion

The COVID-19 outbreak is a difficult time for all, which is why we’re doing our utmost to work with scientists to produce a vaccine. Contact us here for more information about our products and services. 

 

Contact Us

Myths About CBD Manufacturing

Posted by Deb Shechter on Mar 30, 2020 10:40:00 AM

CBD ManufacturingThe CBD industry is a large and competitive one. Since the 2018 Farm Bill that legalized hemp and CBD at the federal level was signed into law a year and a half ago, the market for CBD and other hemp-related products has continued to grow, creating a booming cottage industry that is posed to hit $20 billion by the end of the 2024. While exciting, its rapid rise has made the CBD industry a hard one to fully understand. Constantly changing legislation and many unfounded claims can confuse even the most educated aficionado. Here’s what you need to know about CBD and CBD manufacturing:

 

Myth 1: CBD is the Same as Cannabis

It’s not. CBD is one of many chemicals found in the resin of the cannabis — or “marijuana” — plant. (THC, for instance, is another.) There are several strains of cannabis and when one of them is cultivated to produce a lower concentration of THC and a higher concentration of CBD, the plant is called “hemp,“ not marijuana. Hemp, unlike marijuana, is grown for industrial purposes, with its fibers used to make paper, textiles, plastics, biofuel and more. In this way, CBD can be harvested from both cannabis and hemp plants. The source doesn’t affect the molecular makeup of CBD, but it can influence the amount of contaminants, as well as the amount of other cannabinoids, flavonoids and terpenes, introduced to the CBD manufacturing process. This is because there are different agricultural regulations for growing hemp around the world, leading to possible exposure to pesticides, fungicides, herbicides, etc., and differing concentrations of other compounds depending on the type of plant used (which could be inadvertently harvested along with the CBD). Furthermore, the source also determines the amount of CBD that can be harvested from a single plant. For example: marijuana plants produce more resin than hemp. Since CBD is found in resin, it follows that cannabis yields more CBD per plant than hemp.

 

Myth 2: CBD Manufacturing is Regulated

Yes and no. Most states have regulations governing the manufacture of products containing CBD, but many of these are vague with little standardization of safety and potency guidelines. Not only is there no agreement regarding the minimum requirement for effectiveness and reliability in CBD manufacturing, there’s no one list defining the exact analytes, contaminants, mycotoxins, etc., for which manufacturers should even test. This means different CBD manufacturers offer products with varying levels of quality, making it hard for consumers to know what they are actually getting when they pull a CBD product off the shelf.

 

 

What It All Means for CBD Manufacturing

It’s time for CBD manufacturers to dispel the myths. With all eyes on cannabis products and their effects, one bad product can easily taint public opinion and serve as misinformation about the industry at large. Thus, CBD manufacturers must actively work to distinguish themselves as experts in safety and quality in order to gain consumer trust and remain competitive. The best way to do that: standardize and verify manufacturing processes with quality equipment. BEE International homogenizers render CBD products that meet and even exceed even the most rigorous testing criteria. Equipped with a patented and proprietary emulsifying system that combines multiple forces (including shear, cavitation and impact) to effectively break apart and then mix the components of CBD products, our machines guarantee uniformity and long-lasting shelf stability each and every manufacturing pass. Our homogenizers not only create better looking and better tasting products, they increase the bioavailability of the CBD compound by maximizing surface area to allow increased dissolution and absorption of it by up to 75%. Indeed, our equipment facilitates the absorption of more active ingredient so well that manufacturers can use less of it, reducing costs and shortening production times. It’s a win for manufacturers and consumers alike. To learn how BEE International homogenizers could improve your production processes, your products and your ROI, please contact our office.

 

You might also like to download our free eBook, “3 Reasons Why High Pressure Homogenization Improves Cannabis Products,” for additional facts detailing the value of cannabinoid homogenization.

 

download cannabis ebook

Everything You Need to Know About the Homogenization of Cells

Posted by Deb Shechter on Jan 31, 2020 12:13:15 PM

homogenization of cellsThe homogenization of cells refers to the process by which all components of a biological sample are made equal. By breaking down cell membranes/walls, it allows for the thorough mixing of a sample’s cellular contents. The result: a sample that has a consistent and uniform molecular make-up. Here’s everything you need to know about cell homogenization:

 

The Homogenization Process

The homogenization of cells is basically a cell lysis technique meant to release the intercellular contents of cells so that they can be better accessed, maintained and/or mixed. There are other ways to disrupt (or lyse) cells, such as cryopulverization, nitrogen decompression and more, but the most popular method is homogenization. Homogenization uses one or more types of mechanical force to break apart and mix the components of a sample. When used with biological materials, cell homogenization allows scientists to isolate and study the contents of cells and manufacturers to make better products.

 

Why You Should Homogenize Cells

There are many reasons to choose cell homogenization over other cell lysis methods, the most significant being that different types of cells require different disruption techniques. For instance, some cells are fragile and need a more sensitive means for cell lysis lest the entire cell be destroyed during the process. Some cells have tough outer matrices or walls, warranting a more extreme cell lysis force in order for valuable intercellular contents to be reached. Some cells need enzymes or other reagents added to them to facilitate lysis, and in other cases, the cell lysis procedure itself either creates or relies on a certain temperature that can comprise or otherwise negate optimal results. The considerations are varied and wide-ranging with everything from the cost of the equipment, the size of the sample and stability, reproducibility and scaling problems to even physical space constraints (to accommodate the size of the equipment) also affecting the selection of one cell lysis method over another.

 

The Value of High Pressure Homogenization of Cells

Here at BEE International, we believe that homogenization — specifically, high pressure homogenization — affords the best value for many scientists and manufacturers alike. Our high pressure homogenizers offer a customizable approach to the cell homogenization process, with our patented Emulsifying Cell (EC) technology allowing you to control the type and duration of the force(s) used according to multiple cell types. Indeed, our proprietary homogenizing system can rupture cell walls and membranes without damaging any other crucial cell components, making our equipment effective, efficient and extremely competitive. If you would like to learn more about the homogenization of cells and how high pressure homogenizers can improve your productivity, as well as strengthen the quality of the products you test and create, please contact us. We believe cell homogenization offers countless benefits when used as a part of many research and manufacturing processes.

 

Contact Us

 

Pasteurization vs. Sterilization: What’s the Difference?

Posted by Deb Shechter on Jan 16, 2020 11:08:34 AM

Pasteurization vs. SterilizationWhile the terms “pasteurization” and “sterilization” are sometimes used interchangeably, each is actually a separate process offering unique benefits. Knowing the difference between the two will help you understand why scientists and manufacturers from a wide range of industries choose to use one over the other as they test and create food items, drugs, cosmetics, chemicals and more. Keep reading for a quick overview of the pasteurization vs. sterilization processes:

 

Pasteurization

Pasteurization refers to the application of low level heat to food so that the harmful microorganisms and enzymes in it are either killed or deactivated. By eliminating these pathogens, pasteurization helps preserve many types of food items and prevents food-borne illness and disease upon their consumption. Since only a mild heat is applied, the treated food experiences just a small reduction in nutritional value and little change to its sensory qualities, making pasteurization a great preservation and safety tool for many food products.

 

Sterilization

Sterilization, on the other hand, refers to the process by which all microorganisms are killed or removed from an object or substance. Unlike pasteurization, which usually relies on heat to kill pathogens, sterilization can be achieved via several different means, including high pressure, chemicals and radiation, and can be applied to multiple types of products (not just food).

 

So, How Does Homogenization Fit In?

When considering pasteurization vs. sterilization, it’s easy to also wonder about homogenization. Homogenization is the process by which one substance is broken into uniform parts and thoroughly mixed with another. Different types of homogenizers rely on different forces to reduce particle size and facilitate this mixing — from turbulence, impact and shear to ultrasonic sound waves and high pressure.

Of course, first and foremost, homogenizers are meant to homogenize, but our high pressure homogenizers here at BEE International have the added benefit of effectively pasteurizing many food items, too. During high pressure homogenization (HPH), a sample is exposed to extreme pressure and pushed through tiny holes which breaks the its cellular bonds, reduces its particle size and allows it to be better mixed with another substance. This process doesn’t just allow for better mixing, though; it kills many pathogenic organisms, as well.

Thermal pasteurization is still the most common pasteurization method, but in 2004, the National Advisory Committee on Microbiological Criteria for Foods (NACMCF) issued a report requesting that “pasteurization” be redefined to include "any process, treatment, or combination thereof, that is applied to food to reduce the most resistant microorganism(s) of public health significance to a level that is not likely to present a public health risk under normal conditions of distribution and storage” (i.e., pasteurization can be accomplished via means other than heat). Indeed, many food manufacturers are pushing for increased reliance on high pressure pasteurization since it has the potential not only to reduce nutritional degradation, but to enhance it due to physical and chemical changes that occur when certain foods are exposed to high pressure. Current studies even show promise in using ultra high pressure homogenization for sterilization; there’s little doubt that it’s an exciting time for high pressure homogenizers!

 

Want to Learn More?

If you’re wondering how high pressure homogenization might benefit your pasteurization processes or have other questions regarding pasteurization vs. sterilization methods, please contact us. Our patented emulysifying cell technology affords many advantages; we would be happy to review your needs and help you choose a homogenizing system that will improve your manufacturing or research procedures and boost your productivity, as well as strengthen the quality of the products you test and create.

Feel free to also download our complimentary eBook, “How to Achieve Efficient & Consistent Particle Size Reduction,” for additional information on the value of high pressure homogenization.

 

New Call-to-action

How to Pick the Right Homogenizer for Colloidal Suspensions

Posted by Deb Shechter on Dec 26, 2019 12:34:22 PM

colloidal suspensionsWhen choosing a homogenizer for a particular application, it’s important to first understand the differences among solutions, colloids and suspensions. Each is a type of mixture, and a mixture is one of the end results of the homogenization process. Thus, picking the right homogenizer directly influences the quality of the mixture you create.

 

What are the Difference Among Solutions, Colloids and Suspensions?

A solution is a homogenous mixture where one substance (the solute) is completed dissolved into another (the solvent). Solutions can be a combination of any two phases (solid, liquid or gas), but they always result in a single, continuous one. A colloid, on the other hand, is a heterogenous mixture with particles that are bigger (1-1,000 nm) than those of a solution (<1 nm) but smaller than those in a suspension; because of their size, particles in a colloid do not allow light to pass through the mixture, instead scattering it back outward in a process known as the Tyndall Effect. They are not so big, however, that they aren’t able to stay fully mixed, with components unable to be separated by filtration, time or rest. Last, but not least, a suspension is also a heterogenous mixture. Its particles are bigger than those found in both solutions and colloids; they are so large, in fact, that gravity is able to pull them down and settle them at the bottom of the mixture when it’s not being actively mixed.

 

What Should You Look for in a Homogenizer for Colloidal Suspensions

Colloidal mills are a type of “rotor-stator” or “high shearmixer specifically designed to work with colloid suspensions. As such, their function is to reduce particle size so that two substances can be mixed together more easily. The shearing force of the spinning rotor effectively disrupts molecular bonds within a sample and reduces particle size. They are most often used for mixing together two liquids, a solid with a liquid and/or highly viscous materials. However, colloid mills can’t be run continuously because they consume large amounts of energy, which could potentially contaminate any resulting product mixture. Thus, instead of assuming that a colloid mill is the only option for use with colloidal suspensions, users should consider a homogenizer that affirms the following questions:

Does it Reduce Particle Size? ✔️

Does it Reduce the Number of Passes? ✔️

Does it Help Preserve the Product? ✔️

 

Unlike a colloidal mill, a homogenizer is better able to reduce particle size so that resulting mixtures are much more consistent and uniform. Indeed, we believe our high pressure homogenizers here at BEE International are the best option for colloidal suspensions because they utilize a proprietary combination of high pressure, shear, cavitation, turbulence and impact force to break down and blend samples without the violence and possible degradation of product that can be associated with a singular shear force. Furthermore, our machines can be customized to control the duration, intensity and dominant force used at every stage of the mixing process, making it less likely that multiple passes will be needed to get a desired result. This saves you time and money.

Finally, all homogenizers help preserve products since they facilitate a tight distribution of particles; a tighter distribution of particles means there is more stability, allowing components of a sample to stay bound for longer periods of time and, thus, engendering the improved viscosity, consistency, texture, appearance and flavor (when applicable), as well as the bioavailability, of the products being made. High pressure homogenizers like ours even kill harmful microbes that frequently jeopardize the colloid suspension’s shelf life and quality.

 

Want to Learn More?

Picking a homogenizer to use with colloidal suspensions is best determined by its ability to confer the most benefits. In addition to generating well mixed samples, a BEE International high pressure homogenizer offers tighter particle distribution, improved stability, better preservation and increased manufacturing productivity when compared to other types of homogenizers and mixers. Contact us to learn more.

Contact Us

3 Answers to the Most Frequently Asked Questions About Tissue Tearors

Posted by Deb Shechter on Dec 16, 2019 4:57:55 PM

tissue tearorUnless you’re in the homogenizer-making business (like we are), you might not realize the vast variety of homogenizers that exist. Homogenizers come in all shapes and sizes, from small, handheld whisks to large, industrial machines that exceed the size of some cars! Depending on the desired effect, as well as the volume and consistency of the sample being processed, researchers and manufacturers choose certain types of homogenizers to use over others; one such example is the tissue tearor. Take a look at the three most common questions people have about tissue tearors, along with our answers:

 

What is a Tissue Tearor?

There are three basic kinds of homogenizers: mechanical, ultrasonic and pressure homogenizers. A tissue tearor is a mechanical homogenizer (specifically a rotor-stator one) that is used to homogenize soft tissue samples.

 

How Does a Tissue Tearor Work?

As a rotor-stator homogenizer, a tissue tearor uses a quickly spinning blade (rotor) inside a fixed shaft (stator) to facilitate the lysing of cells, as well as the homogenization of soft tissue samples. The rotor-stator unit (probe) is attached to a motor and can be changed according to the size and type of sample being processed, with different rotor diameters, lengths and blade tips offering different effects. As the rotor rotates within the stator, the resulting suction force pulls the sample (and the liquid in which it has been placed) up and and back out through openings within the stator, effectively shearing the sample. In addition, the rapid collision of the solid blade with the fast-moving liquid/sample mixture creates a change in pressure that leads to the formation of vapor bubbles. These gas-filled cavities expand and eventually collapse, causing a shock wave that further breaks apart the sample in a process known as cavitation. Between the shearing and cavitation forces, tissue tearors are well-suited to homogenize samples with a viscosity up to approximately 10,000 centipoises (such as molasses or syrup).

 

What are the Drawbacks of Tissue Tearors?

Most tissue tearors are best-suited to processing liquid samples up to 1 liter in volume and must be matched to the type of tissue being processed since using too much or too thick of a sample could degrade the homogenizing process altogether. Furthermore, using too small or too large of a tissue homogenizer with the wrong type of probe tip (flat bottom vs. sawtooth) could lead to increased processing times and additional heat generation, thus compounding sample degradation and leading to ineffective homogenization, as well.

 

Have More Questions?

Of course, these are just a few of the initial questions you might have while learning about homogenizers and their applications. If you have more, please contact our team here at BEE International. We can help you consider the pros and cons of all homogenizing systems so that you are able to choose the right and most affordable equipment for your own unique needs.

 

Feel free to also download our complimentary eBook, "7 Key Factors to Consider When Choosing a Cell Lysis Method," for additional information about cell lysis and tissue homogenization.

 

New Call-to-action